Loading…
10th International Congress on Information and Communication Technology in concurrent with ICT Excellence Awards (ICICT 2025) will be held at London, United Kingdom | February 18 - 21 2025.
or to bookmark your favorites and sync them to your phone or calendar.
Type: Virtual Room_15A clear filter
Friday, February 21
 

4:15pm GMT

AgriPredict: Threat Assessment Model for Agricultural Management
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - A B Sagar, K Ramesh Babu, Syed Usman, Deepak Chenthati, E Kiran Kumar, Boppana Balaiah, PSD Praveen, G Allen Pramod
Abstract - Agricultural disasters, mostly ones caused by biological threats, pose severe threats to global food security and economic stability. Early detection and effective management are essential for mitigating these risks. In this research paper we propose a comprehensive disaster prediction and management framework integrating any of the resources like social networks or Internet of Things (IoT) for data collection. The model combines real-time data collection, risk assessment, and decision-making processes to forecast agricultural disasters and suggest mitigation strategies. The mathematical foundation of this model defines relationship between key variables, such as plant species, infestation agent species, tolerance levels, and infestation rates. The system relies on IoT or mobile-based social network agents for data collection at the ground level, to get precise and consistent information from diverse geographic regions. The model further includes a hierarchical risk assessment process that identifies, evaluates, and assesses risks based on predefined criteria, enabling informed decision-making for disaster mitigation. Multiplant species and multi-infestation agent interactions are also considered to capture the complexities of agricultural systems. The proposed framework provides a scalable approach to predicting and managing agricultural disasters, particularly targeting biological threats. By incorporating real-time data and dynamic decision-making mechanisms, the model considerably improves the resilience of agricultural systems against both localized and large-scale threats.
Paper Presenters
avatar for A B Sagar
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom

4:15pm GMT

Analysis of vehicle traffic trends, using the Social Network X (Twitter), Case Study, Quito-Ecuador
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - Herrera Nelson, Paul Francisco Baldeon Egas, Gomez-Torres Estevan, Sancho Jaime
Abstract - Quito, the capital of Ecuador, is the economic core of the country where commercial, administrative, and tourist activities are concentrated. With population growth, the city has undergone major transformations resulting in traffic congestion problems that affect health, cause delays in daily activities, and increase pollution levels among other inconveniences. Over time, important mobility initiatives have been implemented such as traffic control systems, monitoring, construction of peripheral roads, and the "peak and license plate" measure that restricts the use of vehicles during peak hours according to their license plate, a strategy also adopted in several Latin American countries. However, these actions have not been enough, and congestion continues to increase, causing discomfort to citizens. Given this situation, the implementation of a low-cost computer application has been proposed that allows identifying traffic situations in real time and making decisions to improve this problem using processed data from the social network Twitter and traffic records from the city of Quito.
Paper Presenters
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom

4:15pm GMT

Analyzing the Structure of Groupoids of order 3, 4, and 5 Using PCA
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - Elissa Mollakuqe, Hasan Dag, Vesa Mollakuqe, Vesna Dimitrova
Abstract - Groupoids are algebraic structures, which generalize groups by allowing partial symmetries, and are useful in various fields, including topology, category theory, and algebraic geometry. Understanding the variance explained by Principal Component Analysis (PCA) components and the correlations among variables within groupoids can provide valuable insights into their structures and relationships. This study aims to explore the use of PCA as a dimensionality reduction technique to understand the variance explained by different components in the context of groupoids. Additionally, we examine the interrelationships among variables through a color-coded correlation matrix, facilitating insights into the structure and dependencies within groupoid datasets. The findings contribute to the broader understanding of data representation and analysis in mathematical and computational frameworks.
Paper Presenters
avatar for Vesa Mollakuqe

Vesa Mollakuqe

North Macedonia
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom

4:15pm GMT

Berthing Vessels Against Wind Turbines In A Real Seastate
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - Laurent BARTHELEMY
Abstract - In 2024 [7], the author proposed a calculation of weather criteria for vessel boarding against the ladder of an offshore wind turbine, based on a regular wave. However international guidelines [2] prescribe that "95% waves pass with no slip above 300mm (or one ladder rung)". In order to meet such acceptability criteria, it becomes necessary to investigate boarding under a real state, which is an irregular wave. The findings meet the results from other publications [6] [7]. The outcome then is to propose boarding optimisation strategies, compared to present professional practises. The purpose is to achieve less gas emissions, by minimising fuel consumption.
Paper Presenters
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom

4:15pm GMT

Breast Ultrasound Imaging Classification Using Federated Learning Techniques
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - Amro Saleh, Nailah Al-Madi
Abstract - Machine learning (ML) enables valuable insights from data, but traditional ML approaches often require centralizing data, raising privacy and security concerns, especially in sensitive sectors like healthcare. Federated Learning (FL) offers a solution by allowing multiple clients to train models locally without sharing raw data, thus preserving privacy while enabling robust model training. This paper investigates using FL for classifying breast ultrasound images, a crucial task in breast cancer diagnosis. We apply a Convolutional Neural Network (CNN) classifier within an FL framework, evaluated through methods like FedAvg on platforms such as Flower and TensorFlow. The results show that FL achieves competitive accuracy compared to centralized models while ensuring data privacy, making it a promising approach for healthcare applications.
Paper Presenters
avatar for Amro Saleh
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom

4:15pm GMT

Toward an Integrated Health Volunteering (IHV) Framework to Aid Decision-making in the Context of Hajj Pilgrimage
Friday February 21, 2025 4:15pm - 5:45pm GMT
Authors - Ahmed D. Alharthi, Mohammed M. Tounsi
Abstract - The Hajj pilgrimage represents one of the largest mass gatherings globally, posing substantial challenges in terms of health and safety management. Millions of pilgrims converge each year in Saudi Arabia to fulfil their religious obligations, underscoring the critical need to address the various health risks that may emerge during such a large-scale event. Health volunteering plays a pivotal role in delivering timely and high-quality medical services to pilgrims. This study introduces the Integrated Health Volunteering (IHV) framework, designed to enhance health and safety outcomes through an optimised, rapid response system. The IHV framework facilitates the coordinated deployment of healthcare professionals—including doctors, anaesthetists, pharmacists, and others—in critical medical emergencies such as cardiac arrest and severe haemorrhage. Central to this framework is the integration of advanced technologies, including Artificial Intelligence algorithms, to support health volunteers’ decision-making. The framework has been validated and subjected to accuracy assessments to ensure its efficacy in real-world situations, particularly in the context of mass gatherings like the Hajj.
Paper Presenters
avatar for Mohammed M. Tounsi

Mohammed M. Tounsi

Saudi Arabia
Friday February 21, 2025 4:15pm - 5:45pm GMT
Virtual Room A London, United Kingdom
 

Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Inaugural Session
  • Physical Technical Session 1
  • Physical Technical Session 2
  • Virtual Room 4A
  • Virtual Room 4B
  • Virtual Room 4C
  • Virtual Room 4D
  • Virtual Room 4E
  • Virtual Room 5A
  • Virtual Room 5B
  • Virtual Room 5C
  • Virtual Room 5D
  • Virtual Room 5E
  • Virtual Room 6A
  • Virtual Room 6B
  • Virtual Room 6C
  • Virtual Room 6D
  • Virtual Room 7A
  • Virtual Room 7B
  • Virtual Room 7C
  • Virtual Room 7D
  • Virtual Room 8A
  • Virtual Room 8B
  • Virtual Room 8C
  • Virtual Room 8D
  • Virtual Room 8E
  • Virtual Room 9A
  • Virtual Room 9B
  • Virtual Room 9C
  • Virtual Room 9D
  • Virtual Room 9E
  • Virtual Room_10A
  • Virtual Room_10B
  • Virtual Room_10C
  • Virtual Room_10D
  • Virtual Room_11A
  • Virtual Room_11B
  • Virtual Room_11C
  • Virtual Room_11D
  • Virtual Room_12A
  • Virtual Room_12B
  • Virtual Room_12C
  • Virtual Room_12D
  • Virtual Room_12E
  • Virtual Room_13A
  • Virtual Room_13B
  • Virtual Room_13C
  • Virtual Room_13D
  • Virtual Room_14A
  • Virtual Room_14B
  • Virtual Room_14C
  • Virtual Room_14D
  • Virtual Room_15A
  • Virtual Room_15B
  • Virtual Room_15C
  • Virtual Room_15D