Loading…
10th International Congress on Information and Communication Technology in concurrent with ICT Excellence Awards (ICICT 2025) will be held at London, United Kingdom | February 18 - 21 2025.
or to bookmark your favorites and sync them to your phone or calendar.
Type: Virtual Room 6D clear filter
Wednesday, February 19
 

1:58pm GMT

Opening Remarks
Wednesday February 19, 2025 1:58pm - 2:00pm GMT
Wednesday February 19, 2025 1:58pm - 2:00pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

Continuous Learning System for Detecting Anomalies in Daily Routines Using an Autoencoder
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Dominic Gibietz, Daniel Helmer, Eicke Godehardt, Heiko Hinkelmann, Thomas Hollstein
Abstract - The ongoing demographic change towards an aging population increases the need for effective solutions to support independent living and ensure the safety of elderly people living alone. Detecting anomalies in the daily routines of these people is a critical task in order to address these challenges and maintain their well-being. This paper proposes an unobtrusive method for anomaly detection using binary sensor data and machine learning. The approach involves a neural network in form of an autoencoder, which evaluates hourly data of each room, including the accumulated residence time, the activity time, and the number of room entries. The system learns individual normal behaviour through online learning and detects deviations from it. Testing and evaluation of the system was carried out using a publicly available dataset and comparing different configurations for the model. A comparison was also made between the use of individual maximum values for each room to normalize the data and uniform values for all rooms, with the former performing significantly better. The results demonstrate that the system can effectively identify the majority of unusual daily routines with a high accuracy, offering potential for improving safety measures for people living alone.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

Contract Pre-Review Assistance System Based on RAG and LLM
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Chi-Hung Wang, Xiang-Shun Yang, Jun-Yi Liu, Yao-Jun Liu
Abstract - Contract review is a common challenge for governments, businesses, and individuals. It becomes challenging when manual reviews are slow, legal expertise is lacking, and clauses are complex. These issues often lead to legal disputes and business conflicts. Traditional rule-based contract review tools often struggle with ambiguous language and unstructured content. Large language models (LLM) can quickly analyze contracts and find risks. But, they are unreliable due to "hallucinations" and a lack of knowledge of rare clauses. This study used retrieval-augmented generation (RAG) technology to overcome these challenges. It integrated verified legal data with large language models. This improved review accuracy to 93.67%. The F1-scores reached 91.95% for compliant clauses and 94.79% for non-compliant ones. The ROC-AUC metric improved to 0.93. The results show that this approach works. It improves the classification and risk identification of contract clauses. It also helps in contract review in the legal and business sectors, promoting the use of legal tech.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

Data Science Implementation For Social Empowerment
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Samrat Ray, Souvik Datta, Smita Mehendale, Mita Mehta
Abstract - The use of big data in social justice has become a phenomenon that is transforming the entire society, given that it provides solutions to challenges facing the world through the betterment of the lives of the affected groups of people. This paper focuses on the role of positive change by means of data science with a special emphasis on real-time data analysis in supporting power to the people efforts. It starts with the introduction of Data Science approaches and their connection with social transformation focusing on how it has made it possible for organizations to make sound decisions followed by the practical use of real-time big data to support research claims through the use of real-life case scenarios including poverty alleviation, city planning and development among others. Insights from these shed the light on ethical issues and need to make a conscious effort towards making data science solutions available for every segment of society. Finally, the paper analyses the trends and the future possibilities of data science for social enablement. It highlights the possibility of achieving even greater improvement of social programs through advanced research and development. In conclusion, this paper is a summary of how data science can be used to make society better which should prove useful as a reference for policymakers, researchers, and practitioners who are using data to initiate social change.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

DE-OVDR: Depth Estimation and Open Vocabulary Detection for Object Removal
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Chi-Hung Wang, Yu-Siang Siang, Yu-Hsuan Lin, Cheng-Hsien Lin
Abstract - Aerial imagery is widely employed in intelligent transportation management and urban planning. However, dynamic objects often occlude critical information such as road signs and traffic markings, reducing the accuracy of image analysis and thereby affecting application reliability. Although traditional methods can partially address this issue, their high cost and low efficiency pose challenges in large-scale data processing. To overcome these limitations, this study proposes a background averaging technique based on real-time open-vocabulary object detection integrated with difference-based object detection using depth estimation. This approach enables zero-shot dynamic object removal, enhancing both processing efficiency and scalability. Experimental results demonstrate that our technique outperforms conventional methods across multiple performance metrics. Specifically, the multimodal framework combining depth-based differencing with the YOLO-world model achieves Precision, Recall, and F1-Score of 0.9062, 1.0000, and 0.9508, respectively. Furthermore, the Structural Similarity Index (SSIM) for background reconstruction reaches 0.9603, exceeding that of traditional YOLO models (SSIM = 0.9375). These findings indicate that our method not only effectively removes dynamic objects but also accurately restores background information, providing robust support for applications in intelligent transportation management and urban planning.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

Development of Hybrid AI Model-Assisted Bilingual Chatbot for Stunting Education and Nutrition Status Classification
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Wa Ode Siti Nur Alam, Riri Fitri Sari
Abstract - The rapid development of artificial intelligence has facilitated the creation of Chatbot AI systems capable of addressing diverse healthcare challenges, including public education on critical issues like stunting. Leveraging Generative Pre-Trained Transformer (GPT) models and ensemble learning methods, such systems provide accurate, bilingual responses while ensuring scalability. A key implementation, deploying a Bilingual Chatbot AI through the Telegram application, demonstrates the feasibility of using accessible platforms to disseminate vital healthcare information. However, AI chatbots often face limitations, such as inaccurate or delayed responses, hindering user satisfaction and trust. Challenges in stunting education and nutritional status classification include adapting to linguistic nuances and ensuring real-time interaction. Addressing these gaps, we developed a GPT-Ensemble Learning-based chatbot to deliver information about stunting, including its definition, symptoms, impacts, prevention measures, and classification of toddlers' nutritional status based on gender, age, and height. The chatbots provide relevant responses for stunting education and nutritional status classification in Indonesian and English contexts. Our experiments also highlight Random Forest as the optimal ensemble model, achieving exceptional performance metrics: accuracy (0.99), precision (0.99), recall 0.96, F1-score (0.99), and ROC-AUC (0.99). This high performance ensures reliable nutritional status classification while improving accuracy and speed in bilingual interactions. The results underscore the potential of integrating AI-driven solutions into accessible applications like Telegram, which has significant implications for improving public health awareness and decision-making.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

2:00pm GMT

SF-AE: Split Federated Autoencoder for Unsupervised IoT Intrusion Detection
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Authors - Andrea Augello, Alessandra De Paola, Domenico Giosue, Giuseppe Lo Re
Abstract - Smart systems have become increasingly popular in recent years, widening the attack surface of cyber threats. Machine learning algorithms have been successfully integrated into modern security mechanisms to detect such attacks. Internet of Things (IoT) systems often have limited computational resources and are unable to execute entire machine learning pipelines. However, these systems often produce and manage sensitive data. Thus, it is preferable to avoid exposing their data to external analysis, e.g., on cloud systems. This work introduces SF-AE: a novel architecture that enables the distributed training of an anomaly-based intrusion detection system on devices with limited computational resources without exposing sensitive data. Experimental results on multiple datasets show that SF-AE outperforms state-of-the-art methods in terms of attack detection performance, at lower computation and communication costs for the participating devices.
Paper Presenters
Wednesday February 19, 2025 2:00pm - 3:30pm GMT
Virtual Room D London, United Kingdom

3:30pm GMT

Session Chair Remarks
Wednesday February 19, 2025 3:30pm - 3:33pm GMT
Wednesday February 19, 2025 3:30pm - 3:33pm GMT
Virtual Room D London, United Kingdom

3:33pm GMT

Closing Remarks
Wednesday February 19, 2025 3:33pm - 3:35pm GMT
Wednesday February 19, 2025 3:33pm - 3:35pm GMT
Virtual Room D London, United Kingdom
 

Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Inaugural Session
  • Physical Technical Session 1
  • Physical Technical Session 2
  • Virtual Room 4A
  • Virtual Room 4B
  • Virtual Room 4C
  • Virtual Room 4D
  • Virtual Room 4E
  • Virtual Room 5A
  • Virtual Room 5B
  • Virtual Room 5C
  • Virtual Room 5D
  • Virtual Room 5E
  • Virtual Room 6A
  • Virtual Room 6B
  • Virtual Room 6C
  • Virtual Room 6D
  • Virtual Room 7A
  • Virtual Room 7B
  • Virtual Room 7C
  • Virtual Room 7D
  • Virtual Room 8A
  • Virtual Room 8B
  • Virtual Room 8C
  • Virtual Room 8D
  • Virtual Room 8E
  • Virtual Room 9A
  • Virtual Room 9B
  • Virtual Room 9C
  • Virtual Room 9D
  • Virtual Room 9E
  • Virtual Room_10A
  • Virtual Room_10B
  • Virtual Room_10C
  • Virtual Room_10D
  • Virtual Room_11A
  • Virtual Room_11B
  • Virtual Room_11C
  • Virtual Room_11D
  • Virtual Room_12A
  • Virtual Room_12B
  • Virtual Room_12C
  • Virtual Room_12D
  • Virtual Room_12E
  • Virtual Room_13A
  • Virtual Room_13B
  • Virtual Room_13C
  • Virtual Room_13D
  • Virtual Room_14A
  • Virtual Room_14B
  • Virtual Room_14C
  • Virtual Room_14D
  • Virtual Room_15A
  • Virtual Room_15B
  • Virtual Room_15C
  • Virtual Room_15D