10th International Congress on Information and Communication Technology in concurrent with ICT Excellence Awards (ICICT 2025) will be held at London, United Kingdom | February 18 - 21 2025.
Authors - Salma Mosaad Mohamed Elfeky, Mennaallah Nafady Ahmed Yehia, Ali Hamdi Abstract - This paper introduces a novel drone-based plant disease detection system optimized for efficient and scalable deployment using MLOps. Utilizing the CADI AI dataset for cashew crop disease classification, it includes automated workflows for iterative training, testing, and deployment across YOLO architectures (YOLOv5, YOLOv8, YOLOv9, and YOLOv10). Advanced data augmentation and incremental dataset expansion, growing from 757 training images to the full dataset, ensure fair evaluations and model optimization. YOLOv5 achieved a peak mAP@50 of 59.4%, followed by YOLOv8 with 50.1%. Iterative finetuning revealed YOLOv9’s superior insect detection performance (mAP@50: 70.9 %) and YOLOv10’s excellence in abiotic stress detection (mAP@50: 77.3%). This study highlights MLOps’ role in real-time model deployment and benchmarking, showcasing robust object detection capabilities and emphasizing iterative optimization and auto-deployment strategies to address dataset imbalance and enhance precision agriculture.