10th International Congress on Information and Communication Technology in concurrent with ICT Excellence Awards (ICICT 2025) will be held at London, United Kingdom | February 18 - 21 2025.
Authors - Ubayd Bapoo, Clement N Nyirenda Abstract - This study evaluates the performance of Soft Actor Critic (SAC), Greedy Actor Critic (GAC), and Truncated Quantile Critics (TQC) in high-dimensional decision-making tasks using fully observable environments. The focus is on parametrized action (PA) spaces, eliminating the need for recurrent networks, with benchmarks Platformv0 and Goal-v0 testing discrete actions linked to continuous actionparameter spaces. Hyperparameter optimization was performed with Microsoft NNI, ensuring reproducibility by modifying the codebase for GAC and TQC. Results show that Parameterized Action Greedy Actor-Critic (PAGAC) outperformed other algorithms, achieving the fastest training times and highest returns across benchmarks, completing 5,000 episodes in 41:24 for the Platform game and 24:04 for the Robot Soccer Goal game. Its speed and stability provide clear advantages in complex action spaces. Compared to PASAC and PATQC, PAGAC demonstrated superior efficiency and reliability, making it ideal for tasks requiring rapid convergence and robust performance. Future work could explore hybrid strategies combining entropy-regularization with truncation-based methods to enhance stability and expand investigations into generalizability.